威世 | vPolyTan™ 聚合物钽电容器Hi-Rel COTS系列,超低ESR
新型先进设备取代陈旧过时的系统促进了航空电子、国防和太空领域应用的快速增长。这些新系统设备专门满足下一代航空、国防和航天需求。如针对 MIL-STD-704 标准规定的极端环境和电气特性而设计的敌友识别 (IFF) 系统、用于目标跟踪检测的相控阵雷达、航空电子控制和显示以及电力系统等。客户需要保持竞争力,这一需求推动着市场的发展。
这种现代化系统对电容器的容积效率、可靠性、额定电压和大容量提出了更高的要求。为满足这些需求,工程师们一直采用 Vishay 的 vPolyTan™ 固体聚合物钽电容器。
什么是聚合物钽电容器?

导电聚合物与二氧化锰 (MnO2) 钽电容
导电聚合物电容与二氧化锰 (MnO2) 钽电容结构相似。二者的主要区别在于固体电解质使用的材料。标准 MnO2 电容器具有典型半导体导电性。导电聚合物电容器使用固有导电聚合物 (ICP) 材料,导电率高几个数量级。因此,导电聚合物电容器的等效串联电阻 (ESR) 大大低于 MnO2 电容器,并且降低了所需的电压降额。
聚合物电容器无热解/起火故障
导电聚合物电容器的另一个特点是材料中含氧量少,因此不存在起火故障。
电容器电介质中的杂质产生高电流泄漏点。MnO2 钽电容器自愈作用的机理基于MnO2 分子热致变为电阻更大的Mn2O3+ O。泄漏电流导致温度上升到足够高时,形成 Mn2O3 避免这种缺陷造成电流进一步增加,即“自愈”。如果这个过程中产生的游离氧分子与钽在足够高的温度下相互作用,会引燃并产生明火。
如果聚合物电容器的电介质中出现同样的杂质,由于没有助燃的氧气,因此不存在起火故障。自愈时,疵点周围形成高电阻材料。
Vishay Hi-Rel 系列产品

电压降额

高电压
更好的降额准则意味着更高的工作电压,进而提高容积效率。典型聚合物电容器额定电压为 50 V,而 Vishay Sprague vPolyTan™ 技术目前可将额定电压提高到75 V。这样一来,聚合物电容可用于 MIL-STD-704, 28 VDC 总线 (22 VDC – 29 VDC 稳态)应用, 温度达到 125℃ 需要电压隆额。
聚合物电容器额定电压高,加之降额低,使其在容积效率方面优于其他电容器技术。
低ESR
由于阴极结构采用高导电性固有导电聚合物,因此聚合物电容器的 ESR 非常低,通常比 MnO2 钽电容器低 10 %。因此,这种器件特别适合高频和高纹波电流应用。
高可靠性
由于聚合物电容使用固体电解质,因此不像液体或凝胶电解电容器那样容易干燥。这种干燥过程是铝电解电容器的常见故障模式,并且会导致过热。当液体蒸发时,压力增加会导致液体泄漏、膨胀,甚至爆裂/爆炸。固体聚合物电容器没有这种故障机制,因此更可靠,使用寿命更长。与铝电解电容器不同,聚合物电容器可在较高温度下长时间工作,不会产生问题。
MAP技术
Vishay 多阵列封装 (MAP) 技术可在给定体积下实现容量最大化。其方法是缩小引线框,使实际电容器占有更大体积(见图3)。


堆叠电容器
利用 MAP 技术,Vishay 在 T54 系列中增加了堆叠选件,适用于占位面积小、容量大的应用。通过堆叠,多个电容器以并联阵列的形式组合在一起。电容器并联配置可增加容量,降低 ESR。堆叠选项包括 1x2(一个电容器宽,两个高)、1x3、2x2、2x3 和 3x2。额定容值范围 130 uF 至 2800 uF,额定电压范围 75VDC 至 16VDC。还可以提供定制堆叠配置。这些堆叠式大容量配置有助于大量节省设计师的 PCB 空间。

储能/大容量
T54 系列采用 E6 封装(2x3阵列),能量达 5 J/in2,以 900 uF / 35VDC 额定电压堆叠式聚合物电容器理想条件为准。
长期可靠性

广泛应用





